References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J. P. (1978). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Motherwell, W. D. S. (1976). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Stewart, J. M. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1979). B35, 2403-2406

Structure of cis-Bromodicarbonyl(η-cyclopentadienyl)(triphenylphosphine)molybdenum Dichloromethane Solvate

By George A. Sim, James G. Sime and David I. Woodhouse
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland
and Graham R. Knox
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland

(Received 8 June 1979; accepted 9 July 1979)

Abstract

MoBr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})_{2}\right] .4 \mathrm{CH}_{2} \mathrm{Cl}_{2}\), $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrMoO}_{2} \mathrm{P} \cdot \frac{1}{4} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, triclinic, $P \overline{1}, \quad a=$ 18.927 (4), $b=12.335$ (2), $c=11.003$ (2) $\AA, \alpha=$ 103.61 (1), $\beta=105.58$ (1), $\gamma=99.70(1)^{\circ}, U=2330$ $\AA^{3}, D_{m}=1 \cdot 66, Z=4, D_{c}=1.654 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=$ 1154, $\mu($ Mo $K \alpha)=2.52 \mathrm{~mm}^{-1}$. The structure was refined to $R=0.057$ for 5212 diffractometer data. The Br and trans CO sites are partially mutually disordered. The mean Mo-P and $\mathrm{Mo}-\mathrm{Br}$ lengths are 2.532 (2) and 2.671 (3) \AA.

Introduction. $\left[\operatorname{MoBr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$ was prepared by heating $\left[\operatorname{MoBr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]$ with triphenylphosphine under reflux. Red polyhedral crystals were obtained from solution in a petrol-dichloromethane mixture and one $0.20 \times 0.20 \times 0.25 \mathrm{~mm}$ was selected for the X-ray investigation. The intensities of 6944 reflections with $\theta \leq 25^{\circ}$ were measured by the ω 2θ step-scan procedure with Zr-filtered Mo Ka radiation on a Hilger \& Watts four-circle diffractometer. The 5212 observations that satisfied the criterion $I>3 \sigma(I)$ were used in the subsequent analysis.

The coordinates of the two unique Mo atoms were deduced from a Patterson synthesis and the remaining atoms, apart from those of the CO group trans to the Br atom in each molecule, were located from successive electron-density distributions. After preliminary least-squares refinement, a difference synthesis in-
dicated that there is disorder involving some interchange between the Br atom and the trans CO group in each molecule, the effect being similar to the halogencarbonyl disorder that has been reported in several Ir complexes, e.g. $\left[\mathrm{Ir}(\mathrm{CO}) \mathrm{ClO}_{2}\left(\mathrm{PPh}_{3}\right)\right]$ (La Placa \& Ibers, 1965), $\left[\operatorname{Ir}(\mathrm{CO})_{2} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)\right]$ (Payne \& Ibers, 1969), $\left[\operatorname{Ir}(\mathrm{CN})(\mathrm{CO}) \mathrm{Cl}(\mathrm{NCS})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Ibers, Hamilton \& Baddley, 1973) and $\left[\operatorname{IrBr}\left\{\mathrm{C}_{2}(\mathrm{CN})_{4}\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Manojlović-Muir, Muir \& Ibers, 1969).

The population parameters of the Br atoms were initially estimated from peak heights in an electrondensity distribution and were subsequently adjusted by least squares. The population parameters of the C and O atoms of the disordered CO group were kept equal to the appropriate Br parameters. The C and O positions in the disordered group were held fixed at Mo-C and $\mathrm{C}-\mathrm{O}=1.96$ and $1.14 \AA$.

A peak of ca $13 \mathrm{e} \AA^{-3}$, about $1.5 \AA$ from a centre of symmetry, and the centrosymmetrically related peak were identified as Cl atoms of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule. The C atom of this solvent molecule is necessarily disordered and appeared as two peaks, of height 1.4 e \AA^{-3}, related by the centre of symmetry.
When least-squares adjustment of the various parameters reached $R=0.064$, most of the H atoms were apparent in a difference map. The H atoms were included at ideal positions and further refinement converged at $R=0.057, R_{w}=0.050$, with weights $w^{-1}=$ $17+0.01\left(\left|F_{o}\right|-70\right)^{2}-30 \sin \theta$. The peaks and © 1979 International Union of Crystallography

Table 1. Atomic coordinates and population parameters, where different from 1.0

	x	y	z	Population
Mo(1)	0.83611 (4)	0.66078 (6)	-0.04501 (6)	parameter
$\operatorname{Br}(1)$	0.71875 (6)	0.65433 (11)	0.04731 (11)	0.792 (4)
$\mathrm{Br}(1)^{\prime}$	0.88706 (29)	$0 \cdot 84269$ (48)	-0.12185 (46)	0.208
$\mathrm{P}(1)$	0.90319 (11)	$0 \cdot 81259$ (16)	0.17641 (18)	
C(1)	0.8760 (4)	0.7906 (7)	0.3173 (7)	
C(2)	0.8547 (6)	0.6802 (8)	$0 \cdot 3256$ (8)	
C(3)	0.8343 (6)	0.6625 (9)	0.4312 (9)	
C(4)	0.8320 (6)	0.7509 (10)	0.5280 (9)	
C(5)	$0 \cdot 8538$ (5)	0.8611 (10)	0.5254 (8)	
C(6)	0.8755 (5)	0.8819 (8)	0.4194 (8)	
C(7)	1.0053 (4)	0.8231 (7)	0.2288 (8)	
C(8)	1.0418 (5)	0.7990 (8)	0.3438 (10)	
C(9)	1.1172 (6)	0.7980 (9)	0.3751 (12)	
C(10)	$1 \cdot 1568$ (6)	0.8245 (10)	0.2946 (14)	
C(11)	1.1235 (5)	0.8501 (9)	$0 \cdot 1819$ (12)	
C(12)	1.0479 (5)	0.8496 (8)	0.1508 (9)	
C(13)	0.8972 (4)	0.9610 (6)	$0 \cdot 1836$ (7)	
C(14)	0.9586 (5)	1.0525 (8)	0.2393 (11)	
C(15)	0.9501 (6)	1.1633 (8)	0.2462 (15)	
C(16)	$0 \cdot 8808$ (7)	1-1818 (8)	0.1971 (12)	
C(17)	0.8193 (5)	1.0913 (8)	$0 \cdot 1410$ (10)	
C(18)	0.8264 (5)	0.9797 (7)	0.1329 (10)	
C(19)	0.8733	0.7929	-0.1007	$0 \cdot 80$
O(19)	0.8949	0.8697	-0.1331	$0 \cdot 80$
$\mathrm{C}(19)^{\prime}$	0.7502	0.6562	0.0228	0.20
$\mathrm{O}(19)^{\prime}$	0.7002	0.6535	0.0622	$0 \cdot 20$
C(20)	0.7429 (6)	0.6531 (7)	-0.2028 (13)	
$\mathrm{O}(20)$	0.6994 (4)	0.6468 (6)	-0.2782 (7)	
C(21)	0.9387 (5)	0.5893 (8)	-0.0640 (10)	
C(22)	0.8765 (5)	0.5338 (8)	-0.1828 (8)	
C(23)	0.8202 (5)	0.4686 (7)	-0.1504 (8)	
C(24)	0.8478 (6)	0.4779 (8)	-0.0180 (10)	
C(25)	0.9191 (6)	0.5526 (8)	0.0377 (9)	

	x	y	z	Population
Mo(101)	0.61945 (4)	0.35353 (6)	0.27555 (7)	parameter
$\operatorname{Br}(101)$	0.73785 (7)	$0 \cdot 39556$ (12)	0.49201 (12)	0.689 (4)
$\operatorname{Br}(101)^{\prime}$	0.58646 (26)	$0 \cdot 16768$ (35)	0.07178 (38)	0.311
$\mathrm{P}(101)$	0.57168 (10)	0.20250 (16)	0.37428 (18)	
C(101)	0.5977 (4)	$0 \cdot 2428$ (6)	0.5538 (7)	
C(102)	0.5915 (5)	0.3493 (7)	0.6221 (8)	
C(103)	0.6094 (5)	0.3821 (8)	0.7582 (8)	
C(104)	0.6329 (5)	0.3061 (9)	0.8278 (8)	
C(105)	0.6388 (5)	$0 \cdot 2018$ (8)	0.7616 (8)	
C(106)	0.6202 (5)	$0 \cdot 1686$ (7)	0.6255 (8)	
C(107)	0.4677 (4)	0.1549 (7)	0.3181 (8)	
C(108)	0.4280 (5)	$0 \cdot 1562$ (8)	0.4076 (9)	
C(109)	0.3494 (6)	$0 \cdot 1212$ (9)	0.3617 (13)	
C(110)	$0 \cdot 3110$ (5)	0.0880 (9)	$0 \cdot 2276$ (16)	
C(111)	0.3509 (6)	0.0867 (9)	$0 \cdot 1413$ (12)	
C(112)	0.4294 (5)	$0 \cdot 1196$ (8)	$0 \cdot 1844$ (9)	
C(113)	0.6022 (4)	0.0685 (6)	0.3329 (7)	
C(114)	0.5517 (5)	-0.0383 (7)	0.2848 (9)	
C(115)	0.5773 (7)	-0.1367 (8)	0.2517 (11)	
C(116)	0.6519 (8)	-0.1298 (9)	0.2751 (12)	
C(117)	0.7021 (6)	-0.0229 (10)	0.3237 (13)	
C(118)	0.6782 (5)	0.0761 (8)	$0 \cdot 3527$ (11)	
C(119)	0.5929	0.2160	$0 \cdot 1242$	0.69
O(119)	0.5775	0.1360	0.0362	0.69
C(119)'	0.7064	0.3844	0.4346	0.31
O(119)'	0.7571	0.4024	0.5270	0.31
C(120)	0.7153 (7)	0.3639 (8)	0.2136 (9)	
O(120)	0.7561 (4)	0.3677 (7)	0.1854 (7)	
C(121)	0.5084 (5)	0.4004 (9)	$0 \cdot 1809$ (12)	
C(122)	0.5687 (7)	0.4634 (10)	$0 \cdot 1504$ (10)	
C(123)	0.6187 (6)	0.5401 (8)	$0 \cdot 2715$ (11)	
C(124)	0.5886 (7)	0.5252 (8)	$0 \cdot 3716$ (10)	
C(125)	0.5209 (6)	0.4395 (9)	$0 \cdot 3145$ (12)	
Cl	0.99289 (27)	0.48825 (34)	0.36332 (38)	
C(50)	0.9596 (19)	0.4381 (28)	0.4816 (34)	0.50

Fig. 1. The two independent molecules of $\left[\operatorname{MoBr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}{ }^{-}\right.$ $\left(\mathrm{PPh}_{3}\right)$, each viewed along the normal to the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ring.
troughs in a final difference map all lay between 0.7 and -0.8 e \AA^{-3}, the major features being near the disordered sites.

Scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1962). Calculations were performed with XRAY 70 (Stewart, Kundell \& Baldwin, 1970).*

[^0]

Fig. 2. The crystal structure viewed along c. For clarity, only the principal orientation of each molecule of the complex is shown.

Discussion. The atomic coordinates, bond lengths, valency angles and intermolecular contacts are given in Tables 1-4. The atom numbering is shown in Fig. 1 and the crystal structure in Fig. 2.

The analysis confirms the spectroscopic assignment of the complex as the cis isomer. Both molecules adopt a conformation in which a $\mathrm{Mo}-\mathrm{CO}$ bond is oriented approximately over the midpoint of a $\mathrm{C}-\mathrm{C}$ bond of the cyclopentadienyl ring. The mean trans $\mathrm{P}-\mathrm{Mo}-\mathrm{CO}$ angle of 128° and the cis $\mathrm{Br}-\mathrm{Mo}-\mathrm{CO}$ and $\mathrm{Br}-\mathrm{Mo}-\mathrm{P}$

Table 2. Bond lengths (\AA)

	Molecule A	Molecule B
$\mathrm{Mo}(1)-\mathrm{Br}(1)$	$2.676(2)$	$2.666(2)$
$\mathrm{Mo}(1)-\mathrm{Br}(1)^{\prime}$	$2.698(6)$	$2.648(4)$
$\mathrm{Mo}(1)-\mathrm{P}(1)$	$2.538(2)$	$2.525(2)$
$\mathrm{Mo}(1)-\mathrm{C}(20)$	$2.087(11)$	$2.095(14)$
$\mathrm{C}(20)-\mathrm{O}(20)$	$0.977(13)$	$0.904(17)$
$\mathrm{Mo}(1)-\mathrm{C}(21)$	$2.303(11)$	$2.313(10)$
$\mathrm{Mo}(1)-\mathrm{C}(22)$	$2.290(10)$	$2.294(13)$
$\mathrm{Mo}(1)-\mathrm{C}(23)$	$2.310(8)$	$2.315(11)$
$\mathrm{Mo}(1)-\mathrm{C}(24)$	$2.383(10)$	$2.374(11)$
$\mathrm{Mo}(1)-\mathrm{C}(25)$	$2.363(11)$	$2.379(13)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.823(9)$	$1.822(8)$
$\mathrm{P}(1)-\mathrm{C}(7)$	$1.834(8)$	$1.837(8)$
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.837(8)$	$1.838(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.385(13)$	$1.392(11)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.371(16)$	$1.384(12)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.349(15)$	$1.400(15)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.361(17)$	$1.360(14)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.400(15)$	$1.383(12)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.394(11)$	$1.390(13)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.395(14)$	$1.389(15)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.378(14)$	$1.387(13)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.364(21)$	$1.381(19)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.366(19)$	$1.360(21)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.376(14)$	$1.386(13)$
$\mathrm{C}(12)-\mathrm{C}(7)$	$1.381(15)$	$1.376(12)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.360(10)$	$1.379(11)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.389(15)$	$1.387(15)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.358(17)$	$1.347(19)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.354(12)$	$1.377(15)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.390(14)$	$1.370(17)$
$\mathrm{C}(18)-\mathrm{C}(13)$	$1.387(13)$	$1.377(13)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.430(11)$	$1.430(17)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.399(14)$	$1.410(13)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.379(14)$	$1.403(19)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.383(13)$	$1.394(14)$
$\mathrm{C}(25)-\mathrm{C}(21)$	$1.414(16)$	$1.375(17)$
$\mathrm{C}(50)-\mathrm{Cl}$		$1.78(4)$
$\mathrm{C}(50)-\mathrm{Cl}$		$1.65(4)$

[^1]angles of $74-82^{\circ}$ are typical of angles in $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ (CO) ${ }_{2} X Y$] complexes (Bush, Hardy, Manojlovic-Muir \& Sim, 1971; Churchill \& Fennessey, 1968; Hardy \& Sim, 1972).

The mean Mo- Br length of 2.671 (3) \AA is in good agreement with $\mathrm{Mo}-\mathrm{Br}$ distances of $2.66 \AA$ in the seven-coordinate $\mathrm{Mo}^{\mathrm{II}}$ complexes $\left[\mathrm{MoBr}_{2}(\mathrm{CO})_{3}{ }^{-}\right.$ $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$] (Drew, 1972a) and $\left[\mathrm{MoBr}_{2}{ }^{-}\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]$ (Drew, 1972b). The PPh_{3} ligand is situated trans to a CO group and the mean Mo-P length is 2.532 (2) \AA. This is slightly longer than the $\mathrm{Mo}-\mathbf{P}$ distances of $2.47 \AA$ in $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.(\mathrm{CO})_{2}(\mathrm{COMe})\left(\mathrm{PPh}_{3}\right)\right]$ where the PPh_{3} ligand is trans to COMe (Churchill \& Fennessey, 1968), $2.48 \AA$ in $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{I}\left(\mathrm{PPh}_{3}\right)\right]$ where the PPh_{3} ligand is trans to I (Bush, Hardy, Manojlović-Muir \& Sim, 1971), and $2.50 \AA$ in $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})(\mathrm{NCO})-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] where the PPh_{3} ligands are mutually trans (McPhail, Knox, Robertson \& Sim, 1971). This series

Table 3. Valency angles (${ }^{\circ}$)

	Molecule A	Molecule B
$\mathrm{Br}(1)-\mathrm{Mo}(1)-\mathrm{P}(1)$	82.1 (1)	79.6 (1)
$\mathrm{Br}(1)-\mathrm{Mo}(1)-\mathrm{C}(20)$	74.0 (4)	73.9 (3)
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{C}(20)$	131.4 (3)	125.2 (3)
$\mathrm{Mo}(1)-\mathrm{C}(20)-\mathrm{O}(20)$	178.0 (10)	179.0 (8)
$\mathrm{Mo}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	117.2 (2)	116.9 (2)
$\mathrm{Mo}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	111.1 (3)	112.7 (3)
$\mathrm{Mo}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	116.5 (2)	114.6 (3)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	103.4 (4)	103.7 (4)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$103 \cdot 2$ (4)	103.4 (4)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	103.8 (4)	104.0 (3)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 1$ (6)	119.3 (7)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	122.3 (7)	122.3 (6)
$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	121.7 (7)	121.2 (6)
$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	120.5 (7)	118.5 (7)
$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	122.9 (7)	122.1 (7)
$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(18)$	118.0 (6)	118.4 (6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	117.6 (8)	118.3 (7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.6 (8)	121.0 (9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.5 (11)	119.4 (9)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0 (11)	119.9 (8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.8 (9)	120.8 (10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	120.4 (9)	120.7 (8)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	117.7 (8)	120.3 (8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.5 (11)	119.7 (9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.5 (11)	119.9 (13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.8(10)	119.6 (10)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	118.2 (12)	$121.7(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	122.2 (10)	118.8 (10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	119.1 (8)	119.5 (8)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120 \cdot 3$ (9)	119.9 (9)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.7 (8)	120.7 (9)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.6 (9)	119.1 (12)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.8 (9)	121.5 (11)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	119.6 (7)	119.3 (8)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	106.7 (8)	108.8 (8)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	107.6 (9)	106.4 (10)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	108.0 (7)	108.0 (10)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	109.9 (10)	108.5 (9)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	107.7 (8)	108.4 (11)
$\mathrm{Cl}-\mathrm{C}(50)-\mathrm{Cl}^{*}$	115 (2)	

Table 4. Intermolecular contacts $\leq 3.60 \AA$
The e.s.d.'s of these distances are $c a 0.02 \AA$.

$\mathrm{O}(119)^{\prime} \cdots \mathrm{C}(22)^{\text {I }}$	3.22	$\mathrm{O}(19) \cdots \mathrm{C}\left(15{ }^{111}\right.$	3.53
$\mathrm{O}(20) \cdots \mathrm{C}(110)^{\text {II }}$	$3 \cdot 24$	$\mathrm{O}(19)^{\prime} \cdots \mathrm{C}(116)^{\mathrm{VII}}$	$3 \cdot 54$
$\mathrm{O}(119)^{\prime} \cdots \mathrm{C}(23)^{1}$	3.27	$\operatorname{Br}(1)^{\prime} \cdots \mathrm{C}(4)^{\mathrm{vI}}$	3.55
$\mathrm{O}(19) \cdots \mathrm{C}(14)^{\text {III }}$	3.37	$\mathrm{C}(18) \cdots \mathrm{C}(117)^{\mathrm{VII}}$	$3 \cdot 55$
$\mathrm{O}(20) \cdots \mathrm{C}(109)^{11}$	3.40	$\mathrm{O}(120) \cdots \mathrm{C}(16)^{\text {VII }}$	3.55
$\mathrm{C}(21) \cdots \mathrm{C}(25)^{\mathrm{t}}$	3.43	$\mathrm{O}(120) \cdots \mathrm{C}(24)$	3.55
$\mathrm{O}(119) \cdots \mathrm{C}(112)^{\mathrm{V}}$	3.45	$\mathrm{C}(20) \cdots \mathrm{C}(110)^{11}$	3.56
$\mathrm{O}(19) \cdots \mathrm{C}(4)^{\mathrm{V}^{2}}$	3.45	$\mathrm{Cl} \cdots \mathrm{C}(22)^{\text {IV }}$	3.57
$\mathrm{O}(119) \cdots \mathrm{C}(114)^{\mathrm{v}}$	$3 \cdot 50$	$\mathrm{O}(20) \cdots \mathrm{C}(103)^{\mathrm{VI}}$	3.58
$\mathrm{O}(19)^{\prime} \cdots \mathrm{C}(123)$	3.51	$\mathrm{C}(5) \cdots \mathrm{C}(14)^{1 \mathrm{X}}$	3.60
$\mathrm{O}(19) \cdots \mathrm{C}(12)^{\text {II }}$	$3 \cdot 52$	$\mathrm{O}(19) \cdots \mathrm{C}(5)^{\mathrm{v1}}$	3.60

The superscripts refer to the following transformations of the atomic coordinates:

(I)	x,	y,	$1+z$	(VI)	x,	y,	$-1+z$
(II)	$1-x$,	$1-y$,	$-z$	(VII)	x,	$1+y$,	z
(III)	$2-x$,	$2-y$,	$-z$	(VIII)	x,	$-1+y$,	z
(IV)	$2-x$,	$1-y$,	$-z$	(IX)	$2-x$,	$2-y$,	$1-z$.
(V)	$1-x$,	$-y$,	$-z$				

$\left[\mathrm{MoBr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})_{2}\right] . \frac{1}{4} \mathrm{CH}_{2} \mathrm{Cl}_{2}$
may be explicable in terms of the relative π-acceptor capabilities of the groups trans to the phosphine.

In both molecules, the CO group cis to the Br atom has the C atom ca $0.13 \AA(11 \sigma)$ further away from the Mo atom than expected. Abnormal bond lengths of this type are symptomatic of halogen-carbonyl disorder (Payne \& Ibers, 1969) and it is possible that the crystal contains a small amount of trans- $\left[\operatorname{MoBr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$.

We thank the Science Research Council for financial aid.

References

Bush, M. A., Hardy, A. D. U., Manojlović-Muir, LJ. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 1003-1009.
Churchill, M. R. \& Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.

Drew, M. G. B. (1972a). J. Chem. Soc. Dalton Trans. pp. 1329-1333.
Drew, M. G. B. (1972b). J. Chem. Soc. Dalton Trans. pp. 626-631.
Hardy, A. D. U. \& Sim, G. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1900-1903.
Ibers, J. A., Hamilton, D. S. \& Baddley, W. H. (1973). Inorg. Chem. 12, 229-232.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

La Placa, S. J. \& Ibers, J. A. (1965). J. Am. Chem. Soc. 87, 2581-2586.
McPhail, A. T., Knox, G. R., Robertson, C. G. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 205-214.

Manojlović-Muir, LJ., Muir, K. W. \& Ibers, J. A. (1969). Discuss. Faraday Soc. 47, 84-92.
Payne, N. C. \& Ibers, J. A. (1969). Inorg. Chem. 8, 27142718.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 2406-2408

Structure of trans-Dicarbonyl($\boldsymbol{\eta}$-cyclopentadienyl)iodo(phenyl isocyanide)molybdenum

By George A. Sim, James G. Sime and David I. Woodhouse
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland
and Graham R. Knox
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, Scotland

(Received 8 June 1979; accepted 3 July 1979)

Abstract

C}_{14} \mathrm{H}_{10} \mathrm{IMoNO}_{2},\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right)(\mathrm{CO})_{2} \mathrm{I}\right]\), orthorhombic, Pbca, $a=12.035$ (4), $b=17.248$ (5), c $=14.510(5) \AA, U=3012 \AA^{3}, D_{m}=1 \cdot 95, Z=8, D_{c}=$ $1.972 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1696, \mu($ Mo $K(\alpha)=2.93$ mm^{-1}. The structure was refined to $R=0.040$ for 1471 diffractometer data. The $\mathrm{Mo}-\mathrm{I}$, Mo-C(isocyanide) and mean Mo-C(carbonyl) lengths are 2.858 (1), 2.025 (10) and 1.978 (7) \AA, respectively.

Introduction. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{CNPh}) \mathrm{I}$ was prepared by treatment of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}$ I with phenyl isocyanide (Joshi, Pauson \& Stubbs, 1963/64). The crystal used for the X-ray study was selected from a mixture of the cis and trans isomers. Mo Krr radiation was employed and X-ray intensities for reflections with $\theta<27^{\circ}$ were measured by the $\omega-2 \theta$ step-scan procedure on a Hilger \& Watts four-circle diffractometer fitted with a graphite monochromator. The 1564 reflections that were above background on a preliminary rapid scan were recorded. Of these, 1471 satis-

fied the criterion $I>3 \sigma(I)$ and were used in the subsequent analysis.

The coordinates of the Mo and I atoms were deduced from a Patterson synthesis and the remaining atoms located in an electron-density distribution. The atomic parameters were then adjusted by least squares and when R had been reduced to 0.043 a difference synthesis revealed the H atoms. These were included at the positions taken from the difference map and further refinement converged at $R=0.040, R_{w}=0.056$. The weighting scheme was

$$
w=\left[1-\exp \left(-p_{1} \sin ^{2} \theta / \lambda^{2}\right)\right] /\left[1+p_{2}\left|F_{o}\right|+p_{3}\left|F_{o}\right|^{2}\right]
$$

and in the final stages p_{1}, p_{2} and p_{3} were assigned the values $90.0,0.54$ and 0.01 , respectively. Scattering factors, with dispersion corrections for Mo and I, were taken from International Tables for X-ray Crystallography (1962). The calculations were performed with programs developed for the Glasgow University KDF9 © 1979 International Union of Crystallography

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34602 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Cl atom with coordinates $2-x, 1-y, 1-z$.

